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The Algonauts Project algonauts.csail.mit.edu

The quest to understand the nature of human intelligence and engineer
more advanced forms of artificial intelligence are increasingly intertwined.
The Algonauts Project brings biological and artificial intelligence
researchers together on a common platform to exchange ideas and
advance both fields...

Researchers at MIT, Freie Univ. Berlin, Singapore University of Technology and Design

Idea: Organize a competition on the borderline of neuroscience/ML and
a subsequent workshop@MIT...

Another edition is planned for 2020...

3 / 28

http://algonauts.csail.mit.edu/


The Algonauts Project algonauts.csail.mit.edu

The quest to understand the nature of human intelligence and engineer
more advanced forms of artificial intelligence are increasingly intertwined.
The Algonauts Project brings biological and artificial intelligence
researchers together on a common platform to exchange ideas and
advance both fields...

Researchers at MIT, Freie Univ. Berlin, Singapore University of Technology and Design

Idea: Organize a competition on the borderline of neuroscience/ML and
a subsequent workshop@MIT...

Another edition is planned for 2020...

3 / 28

http://algonauts.csail.mit.edu/


The Algonauts Project algonauts.csail.mit.edu

The quest to understand the nature of human intelligence and engineer
more advanced forms of artificial intelligence are increasingly intertwined.
The Algonauts Project brings biological and artificial intelligence
researchers together on a common platform to exchange ideas and
advance both fields...

Researchers at MIT, Freie Univ. Berlin, Singapore University of Technology and Design

Idea: Organize a competition on the borderline of neuroscience/ML and
a subsequent workshop@MIT...

Another edition is planned for 2020...

3 / 28

http://algonauts.csail.mit.edu/


Explaining the Human Visual Brain

I The object is to explain/compare the coding of the human visual
system in terms of Deep Neural Network (DNN) features...

I ... apparently a very active research field...
I ... also slightly controversial – however for higher levels of human

visual processing, DNN features seem to be better than anything else

Ties in exactly with our Research Goal #11:

Porównanie percepcji obrazów w mózgu i w sztucznej sieci neuronowej na
podstawie danych fMRI (np. BOLD5000)
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The competition

The competition formulated the problem in terms of Representational
Similarity Analysis.

I The idea is to show a set of images to a human/DNN
I See how dissimilar are each pair of images −→ this forms an RDM

(Representational Dissimilarity Matrix)
I Try to find a set of DNN features whose RDM is closest to the

human RDM...
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RDM
How to compare different RDM’s?

I Use Spearman’s correlation coefficient
I Take the off-diagonal components of each RDM and flatten them

into a vector...
I Substitute the values by their ranks in each vector
I Compute an ordinary correlation coefficient of the rank vectors...
I Take the square... −→ R2

I In the competition we have 15 human subjects, so 15 human RDM’s

score(RDMDNN) =
1

15

15∑
i=1

R2(RDMDNN ,RDMi )

I The human RDM’s differ between themselves so one cannot hope to
get a perfect score...

I Normalize by a noise threshold

score(RDMDNN)

score
(
1
15

∑15
i=1 RDMi

)
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fMRI and MEG tracks of the competition
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fMRI details

+
1/2 sec

+

2.5 – 6 seconds

2.5 – 6 seconds

+

+

2.5 – 6 seconds

1/2 sec

PRESS BUTTON

+
+

+

+

2.5 – 6 seconds

1/2 sec

N=15

13

from Yalda Mohsenzadeh lecture
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fMRI details

Data Structure

6

Experiment

Data
Time

S1

S2

…

from Yalda Mohsenzadeh lecture
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fMRI details

General Linear Model: Constructing BOLD 
signals

7

HRF Baseline signal

Response to S1

Response to S2

ß1

ß2

ß3

error(t) = signal (t) – prediction (t)

from Yalda Mohsenzadeh lecture
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fMRI details

Visual Recognition in the Brain 

11

IT

EVC

from Yalda Mohsenzadeh lecture
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MEG

Magnetoencephalography (MEG) / 
Electroencephalography (EEG)

17

306 Channel
SQUID sensor array

EEG

from Yalda Mohsenzadeh lecture
13 / 28



MEG – digression: an interesting application

Possible Neural Architectures

23(King et al., 2016) 

(see also King, Dehaene 2014) from Yalda Mohsenzadeh lecture
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MEG – digression: an interesting application

24

Feedforward Recurrent

Architecture

Occluded 60%Un-occluded

A Neural Architecture with Recurrent 
Interactions

(Rajaei, Mohsenzadeh, Ebrahimpour, Khaligh-Razavi, 2019)

from Yalda Mohsenzadeh lecture
15 / 28



The competition – datasets

Training datasets

Test dataset

I All 3 datasets are distinct
I The competition results were

based on the test dataset
I After the end of the

competition the participants
had to give predictions on a
hidden test set (very similar to
the test dataset) to check for
overfitting... 16 / 28
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The competition

I I got 2nd place in the MEG track and 3rd in the fMRI track
I On the hidden test dataset, I got 2nd place in the MEG track and

1st in the fMRI track
I A requirement of the competition was to post a report on the arXiv

(or biorxiv) RJ 1907.00950 [q-bio.NC]

Main ingredients of the submissions...

17 / 28
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RDM peculiarities

Representational Dissimilarity Matrices (RDM) by construction have two
rather unexpected and somewhat unwelcome features:

I They can miss a very strong discriminative signal (if correlated)
I They are influenced by irrelevant uninformative features...

1− R(x , y) = 1− (x − 〈x〉)(y − 〈y〉)
σxσy

xi = +1 yi = −1

RDM will measure only correlation of noise...

18 / 28
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RDM peculiarities
This behavior (insensitivity to the global signal) can be countered by
adding uninformative features...

I This effectively transforms Pearson RDM into cosine dissimilarity

1− x · y
|x ||y |

I This modification significantly increases the scores...
(average of NN activations is relevant for describing brain RDM’s)

I To some extent, the constant level matters...
I The above suggests another (apart from cosine) possible

modification of RDM definition:

〈x〉 −→ featurewise average over the dataset

19 / 28
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Effective receptive field

resnet50

block1 256× 56× 56
block2 512× 28× 28
block3 1024× 14× 14
block4 2048× 7× 7

I NN convolutional features partition
the image into various resolutions

I At the same time, features become
more higher level...

Question: What is the natural resolution
characteristic of brain RDMs?

Use adaptive max pool2d
to reduce each layer to k × k

IT: use 2× 2
EVC, EARLY, LATE: 5× 5

Results much worse with
average pooling

20 / 28
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Feature selection

I RDM is a “global” measure. Features cannot be assessed in
isolation... −→ first pick some reference set...

I Erase or add a NN feature −→ see how the score changes..
I Try to avoid overfitting...
(choosing feature weights to maximize score on training dataset does not

generalize...)

A For each of the 15 subjects
individually evaluate the reference
score and the modified score (with an
added or erased feature). Then take
the mean/z-score of the 15
differences.

B Randomly choose 30 subsets of 1/4
images and use these for the reference
and modified scores. Take the
mean/z-score of the 30 differences.

I For feature pruning use option A on CV test folds as well as on
predictions on other dataset...

I For adding features, we used also a modification of B, with 10
different splits into 5 parts, and requiring positivity on both 118 and
92 datasets... Feature Adding
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Feature selection

This feature selection procedure (option A) can also be used to study the
importance of parts of receptive fields (maxpool2 of vgg19 on the 118
image dataset) (positive values bad)

We erase corners in EARLY and EVC...

The score increases also on the test dataset...
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Solutions for EVC and EARLY

Solutions for EVC and EARLY MEG are very simple...

EVC

1. block2 of resnet18 4.26

2. reduce to 5× 5; extend by 0.2
6.41/24.01

3. eliminate 1/4 of worst features
(algorithm B) 25.21

4. eliminate corners; 0.2→ 0.0
26.90/27.57

5. add best features (enhanced 2×) 28.29

6. add best features from maxpool2 of
vgg19 (shrunk 0.5×)

Score: 28.40

Erronously adding worst features from other
layers instead of 5.+ 6. gave the best score:
32.68

EARLY

1. maxpool2 of vgg19

2. reduce to 5× 5, extend by 0.5

3. eliminate bad features (z > 0.15
on either dataset, algorithm A)

4. eliminate corners

5. add best features (enhanced 3×)

Score: 46.91
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Solutions for IT and LATE – surrogate features

Question: What (abstract) features would reproduce the given brain
RDM (averaged across subjects)? (as measured by Spearman’s...)

Use Multidimensional Scaling (MDS):

MDS
4
118×118 −→ R118×10 repeat with 10 random seeds

using the constructed 100 features gives a score around 77% for the same
dataset

General procedure:

1. Fit the resulting 100 features with NN features
...fit for each layer individually, then combine fits using ridge regression

2. Drop the bad features (evaluating on CV and/or other dataset)

3. Use the model from 1. to construct features for the test images...
(and drop the bad ones identified in step 2.)

24 / 28



Solutions for IT and LATE – surrogate features

Question: What (abstract) features would reproduce the given brain
RDM (averaged across subjects)? (as measured by Spearman’s...)

Use Multidimensional Scaling (MDS):

MDS
4
118×118 −→ R118×10 repeat with 10 random seeds

using the constructed 100 features gives a score around 77% for the same
dataset

General procedure:

1. Fit the resulting 100 features with NN features
...fit for each layer individually, then combine fits using ridge regression

2. Drop the bad features (evaluating on CV and/or other dataset)

3. Use the model from 1. to construct features for the test images...
(and drop the bad ones identified in step 2.)

24 / 28



Solutions for IT and LATE – surrogate features

Question: What (abstract) features would reproduce the given brain
RDM (averaged across subjects)? (as measured by Spearman’s...)

Use Multidimensional Scaling (MDS):

MDS
4
118×118 −→ R118×10 repeat with 10 random seeds

using the constructed 100 features gives a score around 77% for the same
dataset

General procedure:

1. Fit the resulting 100 features with NN features
...fit for each layer individually, then combine fits using ridge regression

2. Drop the bad features (evaluating on CV and/or other dataset)

3. Use the model from 1. to construct features for the test images...
(and drop the bad ones identified in step 2.)

24 / 28



Solutions for IT and LATE – surrogate features

Question: What (abstract) features would reproduce the given brain
RDM (averaged across subjects)? (as measured by Spearman’s...)

Use Multidimensional Scaling (MDS):

MDS
4
118×118 −→ R118×10 repeat with 10 random seeds

using the constructed 100 features gives a score around 77% for the same
dataset

General procedure:

1. Fit the resulting 100 features with NN features
...fit for each layer individually, then combine fits using ridge regression

2. Drop the bad features (evaluating on CV and/or other dataset)

3. Use the model from 1. to construct features for the test images...
(and drop the bad ones identified in step 2.)

24 / 28



Solutions for IT and LATE – surrogate features

Question: What (abstract) features would reproduce the given brain
RDM (averaged across subjects)? (as measured by Spearman’s...)

Use Multidimensional Scaling (MDS):

MDS
4
118×118 −→ R118×10 repeat with 10 random seeds

using the constructed 100 features gives a score around 77% for the same
dataset

General procedure:

1. Fit the resulting 100 features with NN features
...fit for each layer individually, then combine fits using ridge regression

2. Drop the bad features (evaluating on CV and/or other dataset)

3. Use the model from 1. to construct features for the test images...
(and drop the bad ones identified in step 2.)

24 / 28



Solutions for IT and LATE – surrogate features

Question: What (abstract) features would reproduce the given brain
RDM (averaged across subjects)? (as measured by Spearman’s...)

Use Multidimensional Scaling (MDS):

MDS
4
118×118 −→ R118×10 repeat with 10 random seeds

using the constructed 100 features gives a score around 77% for the same
dataset

General procedure:

1. Fit the resulting 100 features with NN features
...fit for each layer individually, then combine fits using ridge regression

2. Drop the bad features (evaluating on CV and/or other dataset)

3. Use the model from 1. to construct features for the test images...
(and drop the bad ones identified in step 2.)

24 / 28



Solutions for IT and LATE – surrogate features

Question: What (abstract) features would reproduce the given brain
RDM (averaged across subjects)? (as measured by Spearman’s...)

Use Multidimensional Scaling (MDS):

MDS
4
118×118 −→ R118×10 repeat with 10 random seeds

using the constructed 100 features gives a score around 77% for the same
dataset

General procedure:

1. Fit the resulting 100 features with NN features
...fit for each layer individually, then combine fits using ridge regression

2. Drop the bad features (evaluating on CV and/or other dataset)

3. Use the model from 1. to construct features for the test images...
(and drop the bad ones identified in step 2.)

24 / 28



Solutions for IT and LATE – surrogate features

Question: What (abstract) features would reproduce the given brain
RDM (averaged across subjects)? (as measured by Spearman’s...)

Use Multidimensional Scaling (MDS):

MDS
4
118×118 −→ R118×10 repeat with 10 random seeds

using the constructed 100 features gives a score around 77% for the same
dataset

General procedure:

1. Fit the resulting 100 features with NN features
...fit for each layer individually, then combine fits using ridge regression

2. Drop the bad features (evaluating on CV and/or other dataset)

3. Use the model from 1. to construct features for the test images...
(and drop the bad ones identified in step 2.)

24 / 28



Solutions for IT and LATE – surrogate features

Question: What (abstract) features would reproduce the given brain
RDM (averaged across subjects)? (as measured by Spearman’s...)

Use Multidimensional Scaling (MDS):

MDS
4
118×118 −→ R118×10 repeat with 10 random seeds

using the constructed 100 features gives a score around 77% for the same
dataset

General procedure:

1. Fit the resulting 100 features with NN features
...fit for each layer individually, then combine fits using ridge regression

2. Drop the bad features (evaluating on CV and/or other dataset)

3. Use the model from 1. to construct features for the test images...
(and drop the bad ones identified in step 2.)

24 / 28



Solutions for IT and LATE – surrogate features

Question: What (abstract) features would reproduce the given brain
RDM (averaged across subjects)? (as measured by Spearman’s...)

Use Multidimensional Scaling (MDS):

MDS
4
118×118 −→ R118×10 repeat with 10 random seeds

using the constructed 100 features gives a score around 77% for the same
dataset

General procedure:

1. Fit the resulting 100 features with NN features
...fit for each layer individually, then combine fits using ridge regression

2. Drop the bad features (evaluating on CV and/or other dataset)

3. Use the model from 1. to construct features for the test images...
(and drop the bad ones identified in step 2.)

24 / 28



Solutions for IT and LATE – surrogate features

Question: What (abstract) features would reproduce the given brain
RDM (averaged across subjects)? (as measured by Spearman’s...)

Use Multidimensional Scaling (MDS):

MDS
4
118×118 −→ R118×10 repeat with 10 random seeds

using the constructed 100 features gives a score around 77% for the same
dataset

General procedure:

1. Fit the resulting 100 features with NN features
...fit for each layer individually, then combine fits using ridge regression

2. Drop the bad features (evaluating on CV and/or other dataset)

3. Use the model from 1. to construct features for the test images...
(and drop the bad ones identified in step 2.)

24 / 28



Solutions for IT and LATE – surrogate features

IT

1. Use resnet50, convolutional
features reduced to 2× 2

2. For 118 dataset MDS features:
ridge regression; OMP(6)

For 92 dataset MDS features:
OMP(7)

3. Concatenate to get 300 features

4. Prune bad features imposing
positivity on 118 dataset

5. Extend with a constant of 1.0
19.42

6. Add in 75+75 ICA from block1,
block3 of resnet34

Score: 20.77

LATE

1. Use resnet50, convolutional
features reduced to 5× 5

2. For 118 dataset MDS features:
GBR(5) with Huber loss

For 92 dataset MDS features:
GBR(5) with Huber loss

3. Concatenate to get 200 features

4. Prune bad features which are bad
(> 0.05) on both datasets

5. Extend with a constant of 1.0

Score: 57.38
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Summary and outlook (from the workshop talk)

I Key difficulty: overfitting
I lots of NN features versus small number of images
I The three datasets were quite distinct...

I Sometimes CV, as well as assessment of feature importance, was not
reliable

I Try to stick to simple models...
I The receptive field reductions to 5× 5 (or 2× 2 for IT) seemed to

be quite robust for all datasets.
I ”second level” (block2 or maxpool2) NN features seem to be a

good staring point...
I Max-pooling much better than average-pooling...

I Perhaps it would be better to modify the definition of RDM to
eliminate the peculiarities mentioned here...

I Instead of MDS, one can generate features (embedding) to
approximate RDM minimizing the mean squared error...

I Of course, instead of surrogate features one could model parts of the
fMRI signal directly...

26 / 28



Summary and outlook (from the workshop talk)

I Key difficulty: overfitting
I lots of NN features versus small number of images
I The three datasets were quite distinct...

I Sometimes CV, as well as assessment of feature importance, was not
reliable

I Try to stick to simple models...
I The receptive field reductions to 5× 5 (or 2× 2 for IT) seemed to

be quite robust for all datasets.
I ”second level” (block2 or maxpool2) NN features seem to be a

good staring point...
I Max-pooling much better than average-pooling...

I Perhaps it would be better to modify the definition of RDM to
eliminate the peculiarities mentioned here...

I Instead of MDS, one can generate features (embedding) to
approximate RDM minimizing the mean squared error...

I Of course, instead of surrogate features one could model parts of the
fMRI signal directly...

26 / 28



Summary and outlook (from the workshop talk)

I Key difficulty: overfitting
I lots of NN features versus small number of images
I The three datasets were quite distinct...

I Sometimes CV, as well as assessment of feature importance, was not
reliable

I Try to stick to simple models...
I The receptive field reductions to 5× 5 (or 2× 2 for IT) seemed to

be quite robust for all datasets.
I ”second level” (block2 or maxpool2) NN features seem to be a

good staring point...
I Max-pooling much better than average-pooling...

I Perhaps it would be better to modify the definition of RDM to
eliminate the peculiarities mentioned here...

I Instead of MDS, one can generate features (embedding) to
approximate RDM minimizing the mean squared error...

I Of course, instead of surrogate features one could model parts of the
fMRI signal directly...

26 / 28



Summary and outlook (from the workshop talk)

I Key difficulty: overfitting
I lots of NN features versus small number of images
I The three datasets were quite distinct...

I Sometimes CV, as well as assessment of feature importance, was not
reliable

I Try to stick to simple models...
I The receptive field reductions to 5× 5 (or 2× 2 for IT) seemed to

be quite robust for all datasets.
I ”second level” (block2 or maxpool2) NN features seem to be a

good staring point...
I Max-pooling much better than average-pooling...

I Perhaps it would be better to modify the definition of RDM to
eliminate the peculiarities mentioned here...

I Instead of MDS, one can generate features (embedding) to
approximate RDM minimizing the mean squared error...

I Of course, instead of surrogate features one could model parts of the
fMRI signal directly...

26 / 28



Summary and outlook (from the workshop talk)

I Key difficulty: overfitting
I lots of NN features versus small number of images
I The three datasets were quite distinct...

I Sometimes CV, as well as assessment of feature importance, was not
reliable

I Try to stick to simple models...
I The receptive field reductions to 5× 5 (or 2× 2 for IT) seemed to

be quite robust for all datasets.
I ”second level” (block2 or maxpool2) NN features seem to be a

good staring point...
I Max-pooling much better than average-pooling...

I Perhaps it would be better to modify the definition of RDM to
eliminate the peculiarities mentioned here...

I Instead of MDS, one can generate features (embedding) to
approximate RDM minimizing the mean squared error...

I Of course, instead of surrogate features one could model parts of the
fMRI signal directly...

26 / 28



Summary and outlook (from the workshop talk)

I Key difficulty: overfitting
I lots of NN features versus small number of images
I The three datasets were quite distinct...

I Sometimes CV, as well as assessment of feature importance, was not
reliable

I Try to stick to simple models...
I The receptive field reductions to 5× 5 (or 2× 2 for IT) seemed to

be quite robust for all datasets.
I ”second level” (block2 or maxpool2) NN features seem to be a

good staring point...
I Max-pooling much better than average-pooling...

I Perhaps it would be better to modify the definition of RDM to
eliminate the peculiarities mentioned here...

I Instead of MDS, one can generate features (embedding) to
approximate RDM minimizing the mean squared error...

I Of course, instead of surrogate features one could model parts of the
fMRI signal directly...

26 / 28



Summary and outlook (from the workshop talk)

I Key difficulty: overfitting
I lots of NN features versus small number of images
I The three datasets were quite distinct...

I Sometimes CV, as well as assessment of feature importance, was not
reliable

I Try to stick to simple models...
I The receptive field reductions to 5× 5 (or 2× 2 for IT) seemed to

be quite robust for all datasets.
I ”second level” (block2 or maxpool2) NN features seem to be a

good staring point...
I Max-pooling much better than average-pooling...

I Perhaps it would be better to modify the definition of RDM to
eliminate the peculiarities mentioned here...

I Instead of MDS, one can generate features (embedding) to
approximate RDM minimizing the mean squared error...

I Of course, instead of surrogate features one could model parts of the
fMRI signal directly...

26 / 28



Summary and outlook (from the workshop talk)

I Key difficulty: overfitting
I lots of NN features versus small number of images
I The three datasets were quite distinct...

I Sometimes CV, as well as assessment of feature importance, was not
reliable

I Try to stick to simple models...
I The receptive field reductions to 5× 5 (or 2× 2 for IT) seemed to

be quite robust for all datasets.
I ”second level” (block2 or maxpool2) NN features seem to be a

good staring point...
I Max-pooling much better than average-pooling...

I Perhaps it would be better to modify the definition of RDM to
eliminate the peculiarities mentioned here...

I Instead of MDS, one can generate features (embedding) to
approximate RDM minimizing the mean squared error...

I Of course, instead of surrogate features one could model parts of the
fMRI signal directly...

26 / 28



Summary and outlook (from the workshop talk)

I Key difficulty: overfitting
I lots of NN features versus small number of images
I The three datasets were quite distinct...

I Sometimes CV, as well as assessment of feature importance, was not
reliable

I Try to stick to simple models...
I The receptive field reductions to 5× 5 (or 2× 2 for IT) seemed to

be quite robust for all datasets.
I ”second level” (block2 or maxpool2) NN features seem to be a

good staring point...
I Max-pooling much better than average-pooling...

I Perhaps it would be better to modify the definition of RDM to
eliminate the peculiarities mentioned here...

I Instead of MDS, one can generate features (embedding) to
approximate RDM minimizing the mean squared error...

I Of course, instead of surrogate features one could model parts of the
fMRI signal directly...

26 / 28



Summary and outlook (from the workshop talk)

I Key difficulty: overfitting
I lots of NN features versus small number of images
I The three datasets were quite distinct...

I Sometimes CV, as well as assessment of feature importance, was not
reliable

I Try to stick to simple models...
I The receptive field reductions to 5× 5 (or 2× 2 for IT) seemed to

be quite robust for all datasets.
I ”second level” (block2 or maxpool2) NN features seem to be a

good staring point...
I Max-pooling much better than average-pooling...

I Perhaps it would be better to modify the definition of RDM to
eliminate the peculiarities mentioned here...

I Instead of MDS, one can generate features (embedding) to
approximate RDM minimizing the mean squared error...

I Of course, instead of surrogate features one could model parts of the
fMRI signal directly...

26 / 28



Summary and outlook (from the workshop talk)

I Key difficulty: overfitting
I lots of NN features versus small number of images
I The three datasets were quite distinct...

I Sometimes CV, as well as assessment of feature importance, was not
reliable

I Try to stick to simple models...
I The receptive field reductions to 5× 5 (or 2× 2 for IT) seemed to

be quite robust for all datasets.
I ”second level” (block2 or maxpool2) NN features seem to be a

good staring point...
I Max-pooling much better than average-pooling...

I Perhaps it would be better to modify the definition of RDM to
eliminate the peculiarities mentioned here...

I Instead of MDS, one can generate features (embedding) to
approximate RDM minimizing the mean squared error...

I Of course, instead of surrogate features one could model parts of the
fMRI signal directly...

26 / 28



Summary and outlook (from the workshop talk)

I Key difficulty: overfitting
I lots of NN features versus small number of images
I The three datasets were quite distinct...

I Sometimes CV, as well as assessment of feature importance, was not
reliable

I Try to stick to simple models...
I The receptive field reductions to 5× 5 (or 2× 2 for IT) seemed to

be quite robust for all datasets.
I ”second level” (block2 or maxpool2) NN features seem to be a

good staring point...
I Max-pooling much better than average-pooling...

I Perhaps it would be better to modify the definition of RDM to
eliminate the peculiarities mentioned here...

I Instead of MDS, one can generate features (embedding) to
approximate RDM minimizing the mean squared error...

I Of course, instead of surrogate features one could model parts of the
fMRI signal directly...

26 / 28



Other approaches

I Aakash Agrawal (Bangalore) used Siamese networks
I Agustin Lage-Castellanos and Federico De Martino (Havana,

Maastricht, Minneapolis) used hand-crafted features based on edges
(EVC/EARLY) and topic categories (IT/LATE), supplemented with
DNN features..
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The workshop

I Matt Bottvinick (Deep Mind) Toward object-oriented deep
reinforcement learning

1. identify objects in an unsupervised way
2. uses VAE like ingredients...
3. in his talk (slides online) refers to many interesting papers

I David Cox (Harvard, IBM) Predictive Coding Models of Perception
1. neural network and some simple neuronal behaviour/optical illusions..
2. unfortunately slides are not yet online...

I Kendrick Kay (Minnesota) Natural Scenes Dataset
1. 7T fMRI dataset with thousands of images from MS-COCO viewed

by 8 subjects
2. will be available at naturalscenesdataset.org

I Worthwhile to look through the talks... workshop web page

28 / 28

http://naturalscenesdataset.org/
http://algonauts.csail.mit.edu/workshop.html


The workshop

I Matt Bottvinick (Deep Mind) Toward object-oriented deep
reinforcement learning

1. identify objects in an unsupervised way
2. uses VAE like ingredients...
3. in his talk (slides online) refers to many interesting papers

I David Cox (Harvard, IBM) Predictive Coding Models of Perception
1. neural network and some simple neuronal behaviour/optical illusions..
2. unfortunately slides are not yet online...

I Kendrick Kay (Minnesota) Natural Scenes Dataset
1. 7T fMRI dataset with thousands of images from MS-COCO viewed

by 8 subjects
2. will be available at naturalscenesdataset.org

I Worthwhile to look through the talks... workshop web page

28 / 28

http://naturalscenesdataset.org/
http://algonauts.csail.mit.edu/workshop.html


The workshop

I Matt Bottvinick (Deep Mind) Toward object-oriented deep
reinforcement learning

1. identify objects in an unsupervised way
2. uses VAE like ingredients...
3. in his talk (slides online) refers to many interesting papers

I David Cox (Harvard, IBM) Predictive Coding Models of Perception
1. neural network and some simple neuronal behaviour/optical illusions..
2. unfortunately slides are not yet online...

I Kendrick Kay (Minnesota) Natural Scenes Dataset
1. 7T fMRI dataset with thousands of images from MS-COCO viewed

by 8 subjects
2. will be available at naturalscenesdataset.org

I Worthwhile to look through the talks... workshop web page

28 / 28

http://naturalscenesdataset.org/
http://algonauts.csail.mit.edu/workshop.html


The workshop

I Matt Bottvinick (Deep Mind) Toward object-oriented deep
reinforcement learning

1. identify objects in an unsupervised way
2. uses VAE like ingredients...
3. in his talk (slides online) refers to many interesting papers

I David Cox (Harvard, IBM) Predictive Coding Models of Perception
1. neural network and some simple neuronal behaviour/optical illusions..
2. unfortunately slides are not yet online...

I Kendrick Kay (Minnesota) Natural Scenes Dataset
1. 7T fMRI dataset with thousands of images from MS-COCO viewed

by 8 subjects
2. will be available at naturalscenesdataset.org

I Worthwhile to look through the talks... workshop web page

28 / 28

http://naturalscenesdataset.org/
http://algonauts.csail.mit.edu/workshop.html


The workshop

I Matt Bottvinick (Deep Mind) Toward object-oriented deep
reinforcement learning

1. identify objects in an unsupervised way
2. uses VAE like ingredients...
3. in his talk (slides online) refers to many interesting papers

I David Cox (Harvard, IBM) Predictive Coding Models of Perception
1. neural network and some simple neuronal behaviour/optical illusions..
2. unfortunately slides are not yet online...

I Kendrick Kay (Minnesota) Natural Scenes Dataset
1. 7T fMRI dataset with thousands of images from MS-COCO viewed

by 8 subjects
2. will be available at naturalscenesdataset.org

I Worthwhile to look through the talks... workshop web page

28 / 28

http://naturalscenesdataset.org/
http://algonauts.csail.mit.edu/workshop.html


The workshop

I Matt Bottvinick (Deep Mind) Toward object-oriented deep
reinforcement learning

1. identify objects in an unsupervised way
2. uses VAE like ingredients...
3. in his talk (slides online) refers to many interesting papers

I David Cox (Harvard, IBM) Predictive Coding Models of Perception
1. neural network and some simple neuronal behaviour/optical illusions..
2. unfortunately slides are not yet online...

I Kendrick Kay (Minnesota) Natural Scenes Dataset
1. 7T fMRI dataset with thousands of images from MS-COCO viewed

by 8 subjects
2. will be available at naturalscenesdataset.org

I Worthwhile to look through the talks... workshop web page

28 / 28

http://naturalscenesdataset.org/
http://algonauts.csail.mit.edu/workshop.html


The workshop

I Matt Bottvinick (Deep Mind) Toward object-oriented deep
reinforcement learning

1. identify objects in an unsupervised way
2. uses VAE like ingredients...
3. in his talk (slides online) refers to many interesting papers

I David Cox (Harvard, IBM) Predictive Coding Models of Perception
1. neural network and some simple neuronal behaviour/optical illusions..
2. unfortunately slides are not yet online...

I Kendrick Kay (Minnesota) Natural Scenes Dataset
1. 7T fMRI dataset with thousands of images from MS-COCO viewed

by 8 subjects
2. will be available at naturalscenesdataset.org

I Worthwhile to look through the talks... workshop web page

28 / 28

http://naturalscenesdataset.org/
http://algonauts.csail.mit.edu/workshop.html


The workshop

I Matt Bottvinick (Deep Mind) Toward object-oriented deep
reinforcement learning

1. identify objects in an unsupervised way
2. uses VAE like ingredients...
3. in his talk (slides online) refers to many interesting papers

I David Cox (Harvard, IBM) Predictive Coding Models of Perception
1. neural network and some simple neuronal behaviour/optical illusions..
2. unfortunately slides are not yet online...

I Kendrick Kay (Minnesota) Natural Scenes Dataset
1. 7T fMRI dataset with thousands of images from MS-COCO viewed

by 8 subjects
2. will be available at naturalscenesdataset.org

I Worthwhile to look through the talks... workshop web page

28 / 28

http://naturalscenesdataset.org/
http://algonauts.csail.mit.edu/workshop.html


The workshop

I Matt Bottvinick (Deep Mind) Toward object-oriented deep
reinforcement learning

1. identify objects in an unsupervised way
2. uses VAE like ingredients...
3. in his talk (slides online) refers to many interesting papers

I David Cox (Harvard, IBM) Predictive Coding Models of Perception
1. neural network and some simple neuronal behaviour/optical illusions..
2. unfortunately slides are not yet online...

I Kendrick Kay (Minnesota) Natural Scenes Dataset
1. 7T fMRI dataset with thousands of images from MS-COCO viewed

by 8 subjects
2. will be available at naturalscenesdataset.org

I Worthwhile to look through the talks... workshop web page

28 / 28

http://naturalscenesdataset.org/
http://algonauts.csail.mit.edu/workshop.html


The workshop

I Matt Bottvinick (Deep Mind) Toward object-oriented deep
reinforcement learning

1. identify objects in an unsupervised way
2. uses VAE like ingredients...
3. in his talk (slides online) refers to many interesting papers

I David Cox (Harvard, IBM) Predictive Coding Models of Perception
1. neural network and some simple neuronal behaviour/optical illusions..
2. unfortunately slides are not yet online...

I Kendrick Kay (Minnesota) Natural Scenes Dataset
1. 7T fMRI dataset with thousands of images from MS-COCO viewed

by 8 subjects
2. will be available at naturalscenesdataset.org

I Worthwhile to look through the talks... workshop web page

28 / 28

http://naturalscenesdataset.org/
http://algonauts.csail.mit.edu/workshop.html


The workshop

I Matt Bottvinick (Deep Mind) Toward object-oriented deep
reinforcement learning

1. identify objects in an unsupervised way
2. uses VAE like ingredients...
3. in his talk (slides online) refers to many interesting papers

I David Cox (Harvard, IBM) Predictive Coding Models of Perception
1. neural network and some simple neuronal behaviour/optical illusions..
2. unfortunately slides are not yet online...

I Kendrick Kay (Minnesota) Natural Scenes Dataset
1. 7T fMRI dataset with thousands of images from MS-COCO viewed

by 8 subjects
2. will be available at naturalscenesdataset.org

I Worthwhile to look through the talks... workshop web page

28 / 28

http://naturalscenesdataset.org/
http://algonauts.csail.mit.edu/workshop.html


The workshop

I Matt Bottvinick (Deep Mind) Toward object-oriented deep
reinforcement learning

1. identify objects in an unsupervised way
2. uses VAE like ingredients...
3. in his talk (slides online) refers to many interesting papers

I David Cox (Harvard, IBM) Predictive Coding Models of Perception
1. neural network and some simple neuronal behaviour/optical illusions..
2. unfortunately slides are not yet online...

I Kendrick Kay (Minnesota) Natural Scenes Dataset
1. 7T fMRI dataset with thousands of images from MS-COCO viewed

by 8 subjects
2. will be available at naturalscenesdataset.org

I Worthwhile to look through the talks... workshop web page

28 / 28

http://naturalscenesdataset.org/
http://algonauts.csail.mit.edu/workshop.html

	Introduction
	The Algonauts Project
	The competition
	fMRI
	MEG

	My approach
	RDM peculiarities
	Effective receptive field
	Surrogate features
	Conclusions

	The workshop
	Other approaches
	Some interesting talks


